Good Book Summary

做研究基础书籍总结

Posted by Zhangcun Yan on September 10, 2023

Machine Learning

  • Neural networks slides in the University of Montreal
  • Autoregressive Generative Modelsslides in the University of Montreal
  • Probabilistic machine learning:Bayesian Time Series Learning with Gaussian Processes
  • Probabilistic machine learning:Probabilistic Machine Learning for Civil Engineers Course Slid (by James-A. Goulet)Video
  • Probabilistic machine learning:Machine Learning: A Probabilistic Perspective(by Kevin P. Murphy)
  • Basic Theory of machine learning:Mathematics for machine learning
  • Decision Theory: Sequential Decisions tutorial
  • Probabilistic Machine Learning: An Introduction Kevin Patrick Murphy.
  • Implementation of machine learning:Diffusion Model(知乎) Code0(Theory): What are Diffusion Models? Code1(Kaggle): Learn Diffusion models with DiffusionFastForward. Code2(Github):guided-diffusion. Diffusion(Mila):tutorials-codes.
  • Image generation model: VAE Model
  • Understanding Variational Autoencoders: VAEs
  • Understanding Deep Learning Simon J.D. Prince
  • Gaussian Processes for Machine LearningGaussian Processes for Machine Learning book,Gaussianprocess codes,example ,Introduction
  • Deep learning applaction Dive into Deep Learning
  • RL — Inverse Reinforcement LearningInverse Reinforcement Learning
  • >Hidden Markov ModelHidden Markov Mode
  • Learning Theory from First Principles
  • DCGAN Tutorial
  • Probabilistic Machine Learning: Advanced Topics
  • Taming nonconvexity in policy optimization
  • A Vision of Linear Algebra
  • Understanding LSTM Networks
  • Second Symposium on Machine Learning and Dynamical Systems
  • Deep Learning
  • Reinforcement Learning

  • Reinforcement Learning
  • 强化学习的数学原理
  • ,强化学习导论
  • Course in Poly of Montreal
  • Reinforcement-ebook
  • Chinese tutorial
  • Causal Reinforcement learning
  • #### Bayesian Theory
  • <a href="https://yxnchen.github.io/research/%E5%8F%98%E5%88%86%E8%B4%9D%E5%8F%B6%E6%96%AF%E6%8E%A8%E6%96%AD%E7%AC%94%E8%AE%B0/#%E5%8F%98%E5%88%86%E8%B4%9D%E5%8F%B6%E6%96%AF%E6%8E%A8%E6%96%AD"</a>贝叶斯变分推断
  • #### Gaussian Processes for Machine Learning
  • Gaussian Processes for Machine Learning Ebook
  • Gaussian processes in matlab,GPML Matlab Code version
  • #### Spatio-temporal data mining
  • python for data science and machine learning bootcamppython for data science and machine learning bootcamp
  • Time series data predicted by hankel: from xinyu's github page
  • Data Visualisation: Data Visualisation
  • Dynamic system model Dynamic system model
  • Data deniose algorithms Denoising algorithms
  • Data vision method Matplotlib
  • Anomaly detection: Anomaly detection
  • #### Machine Learning Theory and Implementation
  • Yotube courseUnderstanding machine learning: from theory to algorithms
  • #### Causality Discovery and Calusal Inference
  • Theory:Causal inference-whta if,James M. Robin)
  • Theory:Causality inference introduce slide
  • Theory:Causal Inference in Statistics:A Primer
  • Course:Introduction to Causal Inference
  • Dynamic Causality Inference:Time Series Causal Inference
  • Dynamic bayesian network: Bynamic bayesian network codes
  • Causality inference implementation:Bayesian network in R
  • Causality inference by time series data:Exploratory Causal Analysis with Time Series Data
  • Causality inference tutorial in R Blearn(知乎), Tutorials
  • Causality inference tutorial In R Blearn(chineae)
  • Causality inference in stata Causality in stata
  • Granger Causality inference introduction about the Granger causality
  • Dynamic causality inference tigramite
  • Causality video in Mila Video
  • Review of the Granger causality review of the Granger causality
  • Good blog about the dynamic causality water blog
  • Causality inference by time series PCMCI Time series book
  • Causality ebookJUDEA PEARL - CAUSALITY
  • #### Python book
  • Python ebookPython basic ebook
  • #### Good book
  • Best book Math book
  • **注:**