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WHY GENERATIVE MODELS

» Useful learning signal for semi-supervised learning

» expect a good model to distinguish between real and fake data
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WHY GENERATIVE MODELS

* lo synthesize new observations
Action-Conditional Video Prediction

using Deep Networks in Atari Games
Oh, Guo, Lee, Singh, Lewis. NIPS 2015

» useful for planning in a visual environment



https://www.youtube.com/watch?v=4e-PqfpS8_4

WHY GENERATIVE MODELS

* As a prior over real observations
Amortised MAP Inference for

| Image Super-resolution
m >onderby, Caballero, Theis, Shi, Huszar. arXiv 2016

» useful for denoising or super-resolution




FAMILY OF GENERATIVE MODEL

* Directed graphical models

» define prior over top-most latent representation

» define conditionals from top latent representation to observation

p(x, b h® W) = p(x[hV)p(hDh=)p(h? h®)p(h®)

» examples: variational autoencoders (VAE), generative adversarial networks (GAN),
sparse coding, helmholtz machines

* Properties
» pros: easy to sample from (ancestral sampling)

» cons: p(X) is intractable, so hard to train



FAMILY OF GENERATIVE MODEL

 Undirected graphical models (Energy-based)

» define a joint energy function
E(x,h® h® h®) = xWOhO — h@OWEORG) _ hOWEH®

» exponentiate and normalize
p(x, b, 0 h®) = exp (—E(x, b, h h®)) /7

» examples: deep Boltzmann machines (DBM), deep energy models

* Properties

» pros: can compute p(X) up to a multiplicative factor (true for RBMs not general BMs)

» cons: hard to sample from (MCMC), p(X) is intractable, so hard to train



FAMILY OF GENERATIVE MODELS

* Autoregressive generative modeils

» choose an ordering of the dimensions In X

» define the conditionals in the product rule expression of p(X) m <
D
p(x) = H p(Tk|X<k)
k=1

» examples: masked autoencoder distribution estimator (MADE), pixel CNN
neural autoregressive distribution estimator (NADE), spatial LSTM, pixelRNN

* Properties

» pros: P(X) is tractable, so easy to train, easy to sample (though slower)

» cons: doesn't have a natural latent representation



FAMILY OF GENERATIVE MODELS

* Autoregressive generative modeils

» autoregressive models are well known for sequence data

(language modeling, time series, etc.) Cm)
X

» less obviously applicable to arbritrary (non-sequential) observations

 Little history
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X
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idem, with new vveight sharing (NADE) (Larochelle and Murray, Gregor and Lecun, 201 |)

2

MADE, Spatial LS TM, PixelRNN, Pixel CNN, WaveNet, Video Pixel Network; etc.




Autoregressive Generative Models

On the menu:
« MADE: Masked Autoencoder for Density Estimator
* PixelCNN Autoregressive CNN

e Extras (WaveNet, Video, etc)



MAD E (Germain, Gregor, Murray and Larochelle, ICML 2015)

« MADE: Masked Autoencoder for Density Estimator
 Question: How do you construct an autoregressive autoencoder?

= Specifically: How to modity the autoencoder so as to satisty the
autoregressive property: where prediction of x;depends only on the

preceding INputs x4 relative to some (arbitrary) ordering.

= |.e. there must be no computational path between output unit x; and any of
the Input units x4, . . ., xp, again relative to some ordering.

= |.e. For each of these paths, at least one connection in the weight matrix
must be 0.



MAD E (Germain, Gregor, Murray and Larochelle, ICML 2015)

* Question: How do you construct an autoregressive autoencoder?

 (Convenient way of zeroing connections is to elementwise-multiply each
matrix by a binary mask matrix M, whose entries that are set to O

correspond to the connections we wish to remove.

 [or asingle hidden layer autoencoder:

h(x) = gb+(WoMY)x)
% = sigm(c+ (VoMY )h(x))



MASKED AUTOENCODER DISTRIBUTION ESTIMATION

Topics: MADE (Germain et al. 2015)

* |dea: constrain output so can be used for the conditionals  p(xg|X<k)
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» Generalization of the work from Bengio and Bengio (2000)



MASKED AUTOENCODER DISTRIBUTION ESTIMATION

Topicsz MADE (Germain et al. 2015)

* |dea: constrain output so can be used for the conditionals  p(xg|X<k)
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MASKED AUTOENCODER DISTRIBUTION ESTIMATION

Topicsz MADE (Germain et al. 2015)

* |dea: constrain output so can be used for the conditionals  p(xg|X<k)
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MASKED AUTOENCODER DISTRIBUTION ESTIMATION

Topicsz MADE (Germain et al. 2015)

* |dea: constrain output so can be used for the conditionals  p(xg|X<k)
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MASKED AUTOENCODER DISTRIBUTION ESTIMATION

Topicsz MADE (Germain et al. 2015)

* |dea: constrain output so can be used for the conditionals  p(xg|X<k)
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MASKED AUTOENCODER DISTRIBUTION ESTIMATION

Topics: MADE (Germain et al. 2015)

* [raining has the same complexity as regular autoencoders

* Computing p(X) is just a matter of performing a forward pass

* Sampling however requires D forward passes

* In practice, very large hidden layers may be required

» not all hidden units can contribute to each conditional



Masked Autoencoder for Distribution Estimation
(MADE)

reconstruction

|

x = decode(encode(x))

x|

L(x)=— Z (xz logz; + (1 — ;) log(1 — :?;Z)>

\ i=1

NLL criterion for a binary x

Germain, Mathieu, et al. "MADE: Masked Autoencoder for Distribution Estimation.” ICML. 2015.



Masked Autoencoder for Distribution Estimation
(I\AADE)

IIIIIIIII
FSEBEEIEEIRIES

Binarized MNIST samples

Germain, Mathieu, et al. "MADE: Masked Autoencoder for Distribution Estimation.” ICML. 2015.



PixelCNN

|[dea: use masked convolutions to enforce the autoregressive relationship
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Qord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks.”
arXiv preprint arXiv:1601.06759 (2016).



PixelCNN

P(Cli‘z' \ X<z’) — p(%,R \ X<i)p(937;,c; | $i,R7X<i)p($i,B | Sl?i,R,%,G,XQ)

|

autoregressive over color channels

RG B Ry -

Mask B 0 255 0 255

R G B

Mask A

Context R G B

0 255 0 255

8-bits pixel values (multinoulli distribution)
Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks. "arXiv preprint arXiv:1601.06759 (2016).



PixelCNN

How can convolutions make
this raster scan faster?

o

Use a stack of masked convolutions

T

L n 2
Training can be parallelized, though generation is still a sequential operation over pixels

van den Qord, Aaron, et al. "Conditional image generation with Pixel CNN decoders.”
Advances in Neural Information Processing Systems. 2016.



PixelCNN

composing multiple
layers Increases the
context size

only depends on pixel
above and to the left

masked convolution

Qord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks.”
arXiv preprint arXiv:1601.06759 (2016).



lmproving PixelCNN

lThere Is a problem with this
form of masked convolution. T

/7

.--- Blind spot

Stacking layers of masked
convolution creates a blindspot

van den Qord, Aaron, et al. "Conditional image generation with Pixel CNN decoders.”
Advances in Neural Information Processing Systems. 2016.



Improving PixelCNN |

A
/ Vertical stack T
< .--- Blind spot “ _
el Hori1zontal stack
Stacking layers of masked Solution: use two stacks of convolution,
convolution creates a blindspot a vertical stack and a horizontal stack

van den Qord, Aaron, et al. "Conditional image generation with Pixel CNN decoders.”
Advances in Neural Information Processing Systems. 2016.



[mproving PixelCNN |

Use more expressive nonlinearity: hi1 = tanh(Wy rxhy) © o(Wy 4 * hy)

VerticaIAstaCk (out) Horizontal stack (out)

This information flow (between
vertical and horizontal stacks)
preserves the correct pixel *
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van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.” NIPS 2016.



EXPERIMENTAL RESULTS

S sliss Conditional Image Generation with Pixel CNN Decoders
TOP'CS. CIFAR-10 van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, Kavukcuoglu, NIPS 2016

* Performance measured in birts/dim

Model NLL Test (Train)
Uniform Distribution: [30] 8.00
Multivariate Gaussian: [30] 4.70
NICE: [4] 4.48
Deep Dittusion: [24] 4.20
DRAW: [9] 4.13
Deep GMMs: [31, 29] 4.00
Conv DRAW: [8] 3.58 (3.57)
RIDE: [26, 30] 3.47
PixelCNN: [30] 3.14 (3.08)
Pi1xelRNN: [30] 3.00 (2.93)

Gated Pixel CNN: 3.03 (2.90)




EXPERIMENTAL RESULTS

I, Conditional Image Generation with Pixel CNN Decoders
ToPIcs' CIFAR-10 van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, Kavukcuoglu, NIPS 2016

» Samples from a class-conditional PixelCNN

Coral Reef

29



EXPERIMENTAL RESULTS

T Opi cs: CIFAR-|0 Conditional Image Generation with PixelCNN Decoders

van den Oord, Kalchbrenner; Vinyals, Espeholt, Graves, Kavukcuoglu, NIPS 2016

- Samples from a class-conditional PixelCNN

Sorrel horse

30



EXPERIMENTAL RESULTS

sals = Conditional Image Generation with PixelCNN Decoders
TOPlCS. CIFAR-10 van den Oord, Kalchbrenner; Vinyals, Espeholt, Graves, Kavukcuoglu, NIPS 2016
o . . L
» Samples from a class-conditional PixelCNN
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EXPERIMENTAL RESULTS

: Conditional Image Generation with Pixel CNN Decoders
Toplcs CIFAR-10 van den Oord, Kalchbrenner; Vinyals, Espeholt, Graves, Kavukcuoglu, NIPS 2016

» Samples from a class-conditional PixelCNN

B G T

[Lhasa Apso (dog)

32



WaveNet

Audio: much larger dimensionality than images (at least 16,000 samples per second)

|[dea: adapt PixelCNN to allow very large temporal dependencies

van den Oord, Adron, et al. "Wavenet: A generative model for raw audio.” CoRR abs/1609.03499 (2016).



WaveNet

Addressing large-scale temporal dependencies
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Regular convolutions Dilated convolutions

Note: strided convolutions cannot be used because the output has to have the same
dimensionality as the input.

van den Oord, Adron, et al. "Wavenet: A generative model for raw audio.” CoRR abs/1609.03499 (2016).



WaveNet

Discrete conditional probabilities

U-law companding
transformation

(¢ ( 16-bit 1Ilt)
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van den Oord, Adron, et al. "Wavenet: A generative model for raw audio.” CoRR abs/1609.03499 (2016).



WaveNet

Complete architecture
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van den Oord, Adron, et al. "Wavenet: A generative model for raw audio.” CoRR abs/1609.03499 (2016).



WaveNet

Conditional generation

z = tanh(Wy, y xx + V,, th) © c(Wjg xx + V,;  h)
Global conditioning (e.q., speaker ID)

z =tanh(Wy s xx+ Vi pxh) ©o(Wg g *x 4+ Vi, x h)

Local conditioning (e.q., text)

van den Oord, Adron, et al. "Wavenet: A generative model for raw audio.” CoRR abs/1609.03499 (2016).



AU [OREGRESSIVE VIDEO MODELS

Topics: Video Pixel Network

« Connect Pixel CNIN to frame-wise convolutional networks and
time-wise convolutional LSTMs

Video Pixel Networks
Kalchbrenner, van den Oord, Simonyan,

- Danihelka, Vinyals, Graves, Kavukcuoglu, NIPS 2016
Fy I Fy Py : -
A A A A
SRS ER E Fet I
< < < < PixelCNN
Decoders
v 4 4 R
F ) ol Py
> > > G L
T T T Resolution Preserving
CNN Encoders
Fo P P

Video Pixel Network

38



AU [OREGRESSIVE VIDEO MODELS

Topics: Video Pixel Network

« Connect Pixel CNN to frame-wise convolutional networks and
time-wise convolutional LSTMs

Video Pixel Networks

Kalchbrenner, van den Oord, Simonyan,

* Videos of robot manipulating Danihelka, Vinyals, Graves, Kavukcuoglu, NIPS 2016

» objects seen in the training set

» New objects not seen In training set

39


https://twitter.com/nalkalchbrenner/status/783116053031358465
https://twitter.com/nalkalchbrenner/status/783119202819375104

Parallel Multiscale Autoregressive Density Estimation

Scott Reed, Aaron vanden Oord, Nal Kalchbrenner, Sergio Go’'mez Colmenarejo, Ziyu Wang, Dan Belov, Nando de Freitas (2017)

Can we speed up the generation time of Pixel CNN?
* Yes, via multiscale generation:



Parallel Multiscale Autoregressive Density Estimation

Scott Reed, Aaron vanden Oord, Nal Kalchbrenner, Sergio Go’'mez Colmenarejo, Ziyu Wang, Dan Belov, Nando de Freitas (2017)

Can we speed up the generation time of Pixel CNN?
* Yes, via multiscale generation:
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Figure 2. Example pixel grouping and ordering for a 4 X 4 image. The upper-left corners form group 1, the upper-right group 2, and so
on. For clarity we only use arrows to indicate immediately-neighboring dependencies, but note that all pixels in preceding groups can
be used to predict all pixels 1in a given group. For example all pixels in group 2 can be used to predict pixels in group 4. In our 1image
experiments pixels in group 1 originate from a lower-resolution image. For video, they are generated given the previous frames.




Parallel Multiscale Autoregressive Density Estimation

Scott Reed, Aaron vanden Oord, Nal Kalchbrenner, Sergio Go’'mez Colmenarejo, Ziyu Wang, Dan Belov, Nando de Freitas (2017)

“A yellow bird with a black head, orange eyes and an orange bill.”
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Can we speed up the generation time & l
of Pixel CNN?

* Yes, via multiscale generation.

* Also seems to help to provide
pbetter global structure

Figure 1. Samples from our model at resolutions from 4 X 4 to
256 x 256, conditioned on text and bird part locations 1in the CUB
data set. See Fig. 4 and the supplement for more examples.



Parallel WaveNet:Fast High-Fidelity Speech Synthesis

(van den Oord et al., 2017)

Can we speed up generation
time of WaveNet”?

* Yes, via distillation training with
a teacher WaveNet.
(matching the KL divergence)

e Used additional losses to
improve performance:

- power loss: match the power
spectrum to real data (speech)

- perceptual loss: distance In
pre-trained classifier activation
space.

- contrastive loss: bring the
output closer to similar data and
farther from dissimilar data.

( | Teacher Output
WaveNet Teacher [0 © 0 © eacher Outpu
P($i|33<z')
O O O O
Linguistic features -----»
O O O
A
- 4
T T T T Generated Samples
© 0 0O 0O 0O 0O 0O 0O 00O 00O 0 0 O %:g(zi\ZQ)

!
A R R R

) Student Output

WaveNet Student O O O O O O O O O O O O O O
O O O O O O O
Linguistic features ----- | O O O O O
ANAY
- J

T T T T T Input noise

c o0 o o o o o o oo 0o o 0o o o O 24

Figure 2: Overview of Probability Density Distillation. A pre-trained WaveNet teacher 1s used to
score the samples x output by the student. The student 1s trained to minimise the KL-divergence
between 1ts distribution and that of the teacher by maximising the log-likelihood of its samples under
the teacher and maximising its own entropy at the same time.



FAMILY OF GENERATIVE MODELS

* Autoregressive generative modeils

» choose an ordering of the dimensions In X

» define the conditionals in the product rule expression of p(X) m <

p(x) = || plaxlx<k)

» examples: masked autoencoder distribution estimator (MADE), pixel CNN
neural autoregressive distribution estimator (NADE), spatial LSTM, pixelRNN

* Properties

» pros: P(X) is tractable, so easy to train, easy to sample (though slower)

» cons: doesn't have a natural latent representation
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