
Institut
des algorithmes
d’apprentissage

de Montréal

Autoregressive Generative
Models

Aaron Courville
Université de Montréal

Slides are drawn from Hugo Larochelle, Vincent Dumoulin and Aaron Courville

• Useful learning signal for semi-supervised learning
‣ expect a good model to distinguish between real and fake data

WHY GENERATIVE MODELS
2

real image random image

Why is one
a character
and not the

other?

WHY GENERATIVE MODELS
• To synthesize new observations
‣ useful for planning in a visual environment

3

Action-Conditional Video Prediction
using Deep Networks in Atari Games

Oh, Guo, Lee, Singh, Lewis. NIPS 2015

https://www.youtube.com/watch?v=4e-PqfpS8_4

WHY GENERATIVE MODELS
• As a prior over real observations
‣ useful for denoising or super-resolution

4

Figure 3: 4⇥ SR of grass textures. Top row shows LR model input x, true HR image y and model outputs
according to figure legend. Bottom row shows zoom in on except from the images in the top row. The AffGAN
image is much sharper than the somewhat blurry AffMSE image. Note that both the AffDG and AffLL produces
very blurry results. The Affinit shows the output from an untrained affine projected model, i. e. the baseline
solution, illustrating the effect of the upsampling using A+.

Figure 4: 4⇥ SR of CelebA faces. Model input x, target y and model outputs
according to figure legend. Both the AffGAN and SoftGAN produces clearly
shaper images than the blurry MSE outputs. We found that AffGAN outputs
slightly sharper images compared to SoftGAN, however also with slightly
more high-frequency noise.

SSIM PSNR `MSE(x,Aŷ)

MSE 0.90 26.30 8.0 · 10�5

AffMSE 0.91 26.53 1.6 · 10�10

SoftGAN 0.76 21.11 2.3 · 10�3

AffGAN 0.81 23.02 9.1 · 10�10

Table 2: PSNR, SSIM and MSE
scores for the CelebA dataset. In
terms of PSNR and SSIM in HR
space the MSE trained models
achieves the best scores as ex-
pected and the AffGAN performs
better than the SoftGAN. Consid-
ering `MSE(x,Aŷ) the models
using the affine projections (Aff)
clearly show better consistency
between input x and down sam-
pled model output Aŷ than mod-
els not using the projection.

where, in terms of PSNR and SSIM, the MSE model achieves the best scores as expected. The
consistency between input and output clearly shows that the models using the affine projections
satisfy Eqn. (5) better than the soft constrained versions for both MSE and GAN losses.

5.5 NATURAL IMAGES

In Figure 5 we show the results for 4⇥ SR from 32⇥ 32 to 128⇥ 128 pixels for AffGAN trained on
natural images from ImageNET. For most of the images the results are sharp and corresponds well
with the LR input. However we still see the high-frequency noise present in most GAN results in
some of the images. Interestingly the snake depicted in the third column is super resolved into water
which is obviously wrong but still a very plausible image considering the LR input image. Further,
water will likely have a higher density under the image prior than snakes which suggests that the
GAN model dreams up reasonable data.

9

Figure 3: 4⇥ SR of grass textures. Top row shows LR model input x, true HR image y and model outputs
according to figure legend. Bottom row shows zoom in on except from the images in the top row. The AffGAN
image is much sharper than the somewhat blurry AffMSE image. Note that both the AffDG and AffLL produces
very blurry results. The Affinit shows the output from an untrained affine projected model, i. e. the baseline
solution, illustrating the effect of the upsampling using A+.

Figure 4: 4⇥ SR of CelebA faces. Model input x, target y and model outputs
according to figure legend. Both the AffGAN and SoftGAN produces clearly
shaper images than the blurry MSE outputs. We found that AffGAN outputs
slightly sharper images compared to SoftGAN, however also with slightly
more high-frequency noise.

SSIM PSNR `MSE(x,Aŷ)

MSE 0.90 26.30 8.0 · 10�5

AffMSE 0.91 26.53 1.6 · 10�10

SoftGAN 0.76 21.11 2.3 · 10�3

AffGAN 0.81 23.02 9.1 · 10�10

Table 2: PSNR, SSIM and MSE
scores for the CelebA dataset. In
terms of PSNR and SSIM in HR
space the MSE trained models
achieves the best scores as ex-
pected and the AffGAN performs
better than the SoftGAN. Consid-
ering `MSE(x,Aŷ) the models
using the affine projections (Aff)
clearly show better consistency
between input x and down sam-
pled model output Aŷ than mod-
els not using the projection.

where, in terms of PSNR and SSIM, the MSE model achieves the best scores as expected. The
consistency between input and output clearly shows that the models using the affine projections
satisfy Eqn. (5) better than the soft constrained versions for both MSE and GAN losses.

5.5 NATURAL IMAGES

In Figure 5 we show the results for 4⇥ SR from 32⇥ 32 to 128⇥ 128 pixels for AffGAN trained on
natural images from ImageNET. For most of the images the results are sharp and corresponds well
with the LR input. However we still see the high-frequency noise present in most GAN results in
some of the images. Interestingly the snake depicted in the third column is super resolved into water
which is obviously wrong but still a very plausible image considering the LR input image. Further,
water will likely have a higher density under the image prior than snakes which suggests that the
GAN model dreams up reasonable data.

9

Amortised MAP Inference for
Image Super-resolution

Sønderby, Caballero, Theis, Shi, Huszár. arXiv 2016

FAMILY OF GENERATIVE MODELS
• Directed graphical models
‣ define prior over top-most latent representation

‣ define conditionals from top latent representation to observation

‣ examples: variational autoencoders (VAE), generative adversarial networks (GAN),
 sparse coding, helmholtz machines

• Properties
‣ pros: easy to sample from (ancestral sampling)

‣ cons: p(x) is intractable, so hard to train

5

...

...
...

...

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

1

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

1

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

1

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

1

p(x,h(1),h(2),h(3)) = p(x|h(1))p(h(1)|h(2))p(h(2)|h(3))p(h(3))

FAMILY OF GENERATIVE MODELS
• Undirected graphical models (Energy-based)
‣ define a joint energy function

‣ exponentiate and normalize

‣ examples: deep Boltzmann machines (DBM), deep energy models

• Properties
‣ pros: can compute p(x) up to a multiplicative factor (true for RBMs not general BMs)
‣ cons: hard to sample from (MCMC), p(x) is intractable, so hard to train

6

...

...
...

...

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

1

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

1

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

1

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

1

E(x,h(1),h(2),h(3)) = �xW(1)h(1) � h(2)W(2)h(3) � h(3)W(3)h(4)

p(x,h(1),h(2),h(3)) = exp
⇣
�E(x,h(1),h(2),h(3))

⌘
/Z

• Autoregressive generative models
‣ choose an ordering of the dimensions in x

‣ define the conditionals in the product rule expression of p(x)

‣ examples: masked autoencoder distribution estimator (MADE), pixelCNN
 neural autoregressive distribution estimator (NADE), spatial LSTM, pixelRNN

• Properties
‣ pros: p(x) is tractable, so easy to train, easy to sample (though slower)
‣ cons: doesn’t have a natural latent representation

FAMILY OF GENERATIVE MODELS
7

...

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

1

p(x) =
DY

k=1

p(xk|x<k)

• Autoregressive generative models
‣ autoregressive models are well known for sequence data

(language modeling, time series, etc.)

‣ less obviously applicable to arbitrary (non-sequential) observations

• Little history

FAMILY OF GENERATIVE MODELS
8

...

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

1

• Autoregressive generative models
‣ autoregressive models are well known for sequence data

(language modeling, time series, etc.)

‣ less obviously applicable to arbitrary (non-sequential) observations

• Little history

FAMILY OF GENERATIVE MODELS
8

...

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

1

logistic regression for the conditionals (Frey et al., 1996)

• Autoregressive generative models
‣ autoregressive models are well known for sequence data

(language modeling, time series, etc.)

‣ less obviously applicable to arbitrary (non-sequential) observations

• Little history

FAMILY OF GENERATIVE MODELS
8

...

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

1

logistic regression for the conditionals (Frey et al., 1996)

neural networks for the conditionals (Bengio and Bengio, 2000)

• Autoregressive generative models
‣ autoregressive models are well known for sequence data

(language modeling, time series, etc.)

‣ less obviously applicable to arbitrary (non-sequential) observations

• Little history

FAMILY OF GENERATIVE MODELS
8

...

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

1

logistic regression for the conditionals (Frey et al., 1996)

neural networks for the conditionals (Bengio and Bengio, 2000)

idem, with new weight sharing (NADE) (Larochelle and Murray, Gregor and Lecun, 2011)

• Autoregressive generative models
‣ autoregressive models are well known for sequence data

(language modeling, time series, etc.)

‣ less obviously applicable to arbitrary (non-sequential) observations

• Little history

FAMILY OF GENERATIVE MODELS
8

...

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

1

logistic regression for the conditionals (Frey et al., 1996)

neural networks for the conditionals (Bengio and Bengio, 2000)

idem, with new weight sharing (NADE) (Larochelle and Murray, Gregor and Lecun, 2011)

MADE, Spatial LSTM, PixelRNN, PixelCNN, WaveNet, Video Pixel Network, etc.

Autoregressive Generative Models

On the menu:

• MADE: Masked Autoencoder for Density Estimator

• PixelCNN Autoregressive CNN

• Extras (WaveNet, Video, etc)

MADE (Germain, Gregor, Murray and Larochelle, ICML 2015)

• MADE: Masked Autoencoder for Density Estimator

• Question: How do you construct an autoregressive autoencoder?

➡ Specifically: How to modify the autoencoder so as to satisfy the
autoregressive property: where prediction of xd depends only on the
preceding inputs x<d, relative to some (arbitrary) ordering.

➡ I.e. there must be no computational path between output unit xd and any of
the input units xd , . . . , xD , again relative to some ordering.

➡ I.e. For each of these paths, at least one connection in the weight matrix
must be 0.

MADE (Germain, Gregor, Murray and Larochelle, ICML 2015)

• Question: How do you construct an autoregressive autoencoder?

• Convenient way of zeroing connections is to elementwise-multiply each
matrix by a binary mask matrix M, whose entries that are set to 0
correspond to the connections we wish to remove.

• For a single hidden layer autoencoder:

MADE: Masked Autoencoder for Distribution Estimation

4. Masked Autoencoders
The question now is how to modify the autoencoder so as
to satisfy the autoregressive property. Since output x̂d must
depend only on the preceding inputs x<d, it means that
there must be no computational path between output unit
x̂d and any of the input units xd, . . . , xD. In other words,
for each of these paths, at least one connection (in matrix
W or V) must be 0.

A convenient way of zeroing connections is to elementwise-
multiply each matrix by a binary mask matrix, whose entries
that are set to 0 correspond to the connections we wish to
remove. For a single hidden layer autoencoder, we write

h(x) = g(b+ (W �MW)x) (6)
x̂ = sigm(c+ (V �MV)h(x)) (7)

where MW and MV are the masks for W and V respec-
tively. It is thus left to the masks MW and MV to satisfy
the autoregressive property.

To impose the autoregressive property we first assign each
unit in the hidden layer an integer m between 1 and D�1
inclusively. The k

th hidden unit’s number m(k) gives the
maximum number of input units to which it can be con-
nected. We disallow m(k)=D since this hidden unit would
depend on all inputs and could not be used in modelling
any of the conditionals p(xd |x<d). Similarly, we exclude
m(k)=0, as it would create constant hidden units.

The constraints on the maximum number of inputs to each
hidden unit are encoded in the matrix masking the connec-
tions between the input and hidden units:

M
W
k,d = 1m(k)�d =

⇢
1 if m(k) � d

0 otherwise, (8)

for d2 {1, . . . , D} and k 2 {1, . . . ,K}. Overall, we need
to encode the constraint that the d

th output unit is only
connected to x<d (and thus not to x�d). Therefore the
output weights can only connect the d

th output to hidden
units with m(k)<d, i.e. units that are connected to at most
d�1 input units. These constraints are encoded in the output
mask matrix:

M
V
d,k = 1d>m(k) =

⇢
1 if d > m(k)
0 otherwise, (9)

again for d 2 {1, . . . , D} and k 2 {1, . . . ,K}. Notice that,
from this rule, no hidden units will be connected to the first
output unit x̂1, as desired.

From these mask constructions, we can easily demonstrate
that the corresponding masked autoencoder satisfies the au-
toregressive property. First, we note that, since the masks
MV and MW represent the network’s connectivity, their
matrix product MV,W = MVMW represents the connec-
tivity between the input and the output layer. Specifically,

M
V,W
d0,d is the number of network paths between output unit

x̂d0 and input unit xd. Thus, to demonstrate the autoregres-
sive property, we need to show that MV,W is strictly lower
diagonal, i.e. MV,W

d0,d is 0 if d0  d. By definition of the
matrix product, we have:

M
V,W
d0,d =

KX

k=1

M
V
d0,kM

W
k,d =

KX

k=1

1d0>m(k)1m(k)�d. (10)

If d0  d, then there are no values for m(k) such that it is
both strictly less than d

0 and greater or equal to d. Thus
M

V,W
d0,d is indeed 0.

Constructing the masks MV and MW only requires an as-
signment of the m(k) values to each hidden unit. One could
imagine trying to assign an (approximately) equal number
of units to each legal value of m(k). In our experiments, we
instead set m(k) by sampling from a uniform discrete dis-
tribution defined on integers from 1 to D�1, independently
for each of the K hidden units.

Previous work on autoregressive neural networks have also
found it advantageous to use direct connections between the
input and output layers (Bengio & Bengio, 2000). In this
context, the reconstruction becomes:

x̂ = sigm(c+ (V �MV)h(x) + (A�MA)x) , (11)

where A is the parameter connection matrix and MA is its
mask matrix. To satisfy the autoregressive property, MA

simply needs to be a strictly lower diagonal matrix, filled
otherwise with ones. We used such direct connections in
our experiments as well.

4.1. Deep MADE

One advantage of the masked autoencoder framework de-
scribed in the previous section is that it naturally generalizes
to deep architectures. Indeed, as we’ll see, by assigning a
maximum number of connected inputs to all units across
the deep network, masks can be similarly constructed so as
to satisfy the autoregressive property.

For networks with L>1 hidden layers, we use superscripts
to index the layers. The first hidden layer matrix (previously
W) will be denoted W1, the second hidden layer matrix will
be W2, and so on. The number of hidden units (previously
K) in each hidden layer will be similarly indexed as K

l,
where l is the hidden layer index. We will also generalize
the notation for the maximum number of connected inputs
of the k

th unit in the l
th layer to m

l(k).

We’ve already discussed how to define the first layer’s mask
matrix such that it ensures that its kth unit is connected to
at most m(k) (now m

1(k)) inputs. To impose the same
property on the second hidden layer, we must simply make
sure that each unit k0 is only connected to first layer units

MASKED AUTOENCODER DISTRIBUTION ESTIMATION
12

Topics: MADE (Germain et al. 2015)

• Idea: constrain output so can be used for the conditionals

• Generalization of the work from Bengio and Bengio (2000)

p(xk|x<k)MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

MASKED AUTOENCODER DISTRIBUTION ESTIMATION
13

Topics: MADE (Germain et al. 2015)

• Idea: constrain output so can be used for the conditionals

• Generalization of the work from Bengio and Bengio (2000)

p(xk|x<k)MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

Masks

MASKED AUTOENCODER DISTRIBUTION ESTIMATION
14

Topics: MADE (Germain et al. 2015)

• Idea: constrain output so can be used for the conditionals

• Generalization of the work from Bengio and Bengio (2000)

p(xk|x<k)MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

Masks

MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

MASKED AUTOENCODER DISTRIBUTION ESTIMATION
15

Topics: MADE (Germain et al. 2015)

• Idea: constrain output so can be used for the conditionals

• Generalization of the work from Bengio and Bengio (2000)

p(xk|x<k)MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

Masks

MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

MASKED AUTOENCODER DISTRIBUTION ESTIMATION
16

Topics: MADE (Germain et al. 2015)

• Idea: constrain output so can be used for the conditionals

• Generalization of the work from Bengio and Bengio (2000)

p(xk|x<k)MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

Masks

MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

MASKED AUTOENCODER DISTRIBUTION ESTIMATION
17

Topics: MADE (Germain et al. 2015)

• Idea: constrain output so can be used for the conditionals

• Generalization of the work from Bengio and Bengio (2000)

p(xk|x<k)MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

Masks

MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

MASKED AUTOENCODER DISTRIBUTION ESTIMATION
17

Topics: MADE (Germain et al. 2015)

• Idea: constrain output so can be used for the conditionals

• Generalization of the work from Bengio and Bengio (2000)

p(xk|x<k)MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

Masks

MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

MASKED AUTOENCODER DISTRIBUTION ESTIMATION
17

Topics: MADE (Germain et al. 2015)

• Idea: constrain output so can be used for the conditionals

• Generalization of the work from Bengio and Bengio (2000)

p(xk|x<k)MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

Masks

MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

MASKED AUTOENCODER DISTRIBUTION ESTIMATION
18

Topics: MADE (Germain et al. 2015)

• Training has the same complexity as regular autoencoders

• Computing p(x) is just a matter of performing a forward pass

• Sampling however requires D forward passes

• In practice, very large hidden layers may be required
‣ not all hidden units can contribute to each conditional

 Masked Autoencoder for Distribution Estimation
(MADE)

Germain, Mathieu, et al. "MADE: Masked Autoencoder for Distribution Estimation." ICML. 2015.

x̂ = decode(encode(x))

L(x) = �
|x|X

i=1

⇣
xi log x̂i + (1� xi) log(1� x̂i)

⌘

reconstruction

NLL criterion for a binary x

 Masked Autoencoder for Distribution Estimation
(MADE)

Germain, Mathieu, et al. "MADE: Masked Autoencoder for Distribution Estimation." ICML. 2015.

Binarized MNIST samples

PixelCNN

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks.”
arXiv preprint arXiv:1601.06759 (2016).

Idea: use masked convolutions to enforce the autoregressive relationship

x1

xi

xn

xn2

Context

xn2

p(xi | x<i)

0 255 1 1 1 1 1

1 1 1 1 1

1 1 0 0 0

0 0 0

0 0 0

0

0

0

0

Blind spot

Horizontal stack

Vertical stack

Figure 1: Left: A visualization of the PixelCNN that maps a neighborhood of pixels to prediction for
the next pixel. To generate pixel xi the model can only condition on the previously generated pixels
x1, . . . xi�1. Middle: an example matrix that is used to mask the 5x5 filters to make sure the model
cannot read pixels below (or strictly to the right) of the current pixel to make its predictions. Right:
Top: PixelCNNs have a blind spot in the receptive field that can not be used to make predictions.
Bottom: Two convolutional stacks (blue and purple) allow to capture the whole receptive field.

combine the strengths of both models by introducing a gated variant of PixelCNN (Gated PixelCNN)
that matches the log-likelihood of PixelRNN on both CIFAR and ImageNet, while requiring less than
half the training time.

We also introduce a conditional variant of the Gated PixelCNN (Conditional PixelCNN) that allows
us to model the complex conditional distributions of natural images given a latent vector embedding.
We show that a single Conditional PixelCNN model can be used to generate images from diverse
classes such as dogs, lawn mowers and coral reefs, by simply conditioning on a one-hot encoding
of the class. Similarly one can use embeddings that capture high level information of an image to
generate a large variety of images with similar features. This gives us insight into the invariances
encoded in the embeddings — e.g., we can generate different poses of the same person based on a
single image. The same framework can also be used to analyse and interpret different layers and
activations in deep neural networks.

2 Gated PixelCNN

PixelCNNs (and PixelRNNs) [30] model the joint distribution of pixels over an image x as the
following product of conditional distributions, where xi is a single pixel:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1). (1)

The ordering of the pixel dependencies is in raster scan order: row by row and pixel by pixel within
every row. Every pixel therefore depends on all the pixels above and to the left of it, and not on any
of other pixels. The dependency field of a pixel is visualized in Figure 1 (left).

A similar setup has been used by other autoregressive models such as NADE [14] and RIDE [26].
The difference lies in the way the conditional distributions p(xi|x1, ..., xi�1) are constructed. In
PixelCNN every conditional distribution is modelled by a convolutional neural network. To make
sure the CNN can only use information about pixels above and to the left of the current pixel, the
filters of the convolution are masked as shown in Figure 1 (middle). For each pixel the three colour
channels (R, G, B) are modelled successively, with B conditioned on (R, G), and G conditioned on R.
This is achieved by splitting the feature maps at every layer of the network into three and adjusting the
centre values of the mask tensors. The 256 possible values for each colour channel are then modelled
using a softmax.

PixelCNN typically consists of a stack of masked convolutional layers that takes an N x N x 3 image
as input and produces N x N x 3 x 256 predictions as output. The use of convolutions allows the
predictions for all the pixels to be made in parallel during training (all conditional distributions from
Equation 1). During sampling the predictions are sequential: every time a pixel is predicted, it is

2

Pixel Recurrent Neural Networks

In the literature it is currently best practice to add real-
valued noise to the pixel values to dequantize the data when
using density functions (Uria et al., 2013). When uniform
noise is added (with values in the interval [0, 1]), then the
log-likelihoods of continuous and discrete models are di-
rectly comparable (Theis et al., 2015). In our case, we can
use the values from the discrete distribution as a piecewise-
uniform continuous function that has a constant value for
every interval [i, i + 1], i = 1, 2, . . . 256. This correspond-
ing distribution will have the same log-likelihood (on data
with added noise) as the original discrete distribution (on
discrete data).

For MNIST we report the negative log-likelihood in nats
as it is common practice in literature. For CIFAR-10 and
ImageNet we report negative log-likelihoods in bits per di-
mension. The total discrete log-likelihood is normalized by
the dimensionality of the images (e.g., 32⇥ 32⇥ 3 = 3072
for CIFAR-10). These numbers are interpretable as the
number of bits that a compression scheme based on this
model would need to compress every RGB color value
(van den Oord & Schrauwen, 2014b; Theis et al., 2015);
in practice there is also a small overhead due to arithmetic
coding.

5.2. Training Details

Our models are trained on GPUs using the Torch toolbox.
From the different parameter update rules tried, RMSProp
gives best convergence performance and is used for all ex-
periments. The learning rate schedules were manually set
for every dataset to the highest values that allowed fast con-
vergence. The batch sizes also vary for different datasets.
For smaller datasets such as MNIST and CIFAR-10 we use
smaller batch sizes of 16 images as this seems to regularize
the models. For ImageNet we use as large a batch size as
allowed by the GPU memory; this corresponds to 64 im-
ages/batch for 32 ⇥ 32 ImageNet, and 32 images/batch for
64 ⇥ 64 ImageNet. Apart from scaling and centering the
images at the input of the network, we don’t use any other
preprocessing or augmentation. For the multinomial loss
function we use the raw pixel color values as categories.
For all the PixelRNN models, we learn the initial recurrent
state of the network.

5.3. Discrete Softmax Distribution

Apart from being intuitive and easy to implement, we find
that using a softmax on discrete pixel values instead of a
mixture density approach on continuous pixel values gives
better results. For the Row LSTM model with a softmax
output distribution we obtain 3.06 bits/dim on the CIFAR-
10 validation set. For the same model with a Mixture of
Conditional Gaussian Scale Mixtures (MCGSM) (Theis &
Bethge, 2015) we obtain 3.22 bits/dim.

In Figure 6 we show a few softmax activations from the
model. Although we don’t embed prior information about
the meaning or relations of the 256 color categories, e.g.
that pixel values 51 and 52 are neighbors, the distributions
predicted by the model are meaningful and can be multi-
modal, skewed, peaked or long tailed. Also note that values
0 and 255 often get a much higher probability as they are
more frequent. Another advantage of the discrete distribu-
tion is that we do not worry about parts of the distribution
mass lying outside the interval [0, 255], which is something
that typically happens with continuous distributions.

 0 50 100 150 200 250 0 50 100 150 200 250

 0 50 100 150 200 250 0 50 100 150 200 250

 0 255

0 255 0 255 0 255

 0 255

Figure 6. Example softmax activations from the model. The top
left shows the distribution of the first pixel red value (first value
to sample).

5.4. Residual Connections

Another core component of the networks is residual con-
nections. In Table 2 we show the results of having residual
connections, having standard skip connections or having
both, in the 12-layer CIFAR-10 Row LSTM model. We
see that using residual connections is as effective as using
skip connections; using both is also effective and preserves
the advantage.

No skip Skip

No residual: 3.22 3.09
Residual: 3.07 3.06

Table 2. Effect of residual and skip connections in the Row LSTM
network evaluated on the Cifar-10 validation set in bits/dim.

When using both the residual and skip connections, we see
in Table 3 that performance of the Row LSTM improves
with increased depth. This holds for up to the 12 LSTM
layers that we tried.

PixelCNN

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks.”arXiv preprint arXiv:1601.06759 (2016).

p(xi | x<i) = p(xi,R | x<i)p(xi,G | xi,R,x<i)p(xi,B | xi,R, xi,G,x<i)

autoregressive over color channels
R G B

R G B

R G B
Mask A

Mask B

Context

8-bits pixel values (multinoulli distribution)

PixelCNN

van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.”
Advances in Neural Information Processing Systems. 2016.

x1

xi

xn

xn2

Context

xn2

How can convolutions make
this raster scan faster?

1 1 1 1 1

1 1 1 1 1

1 1 0 0 0

0 0 0

0 0 0

0

0

0

0

Use a stack of masked convolutions

Training can be parallelized, though generation is still a sequential operation over pixels

PixelCNN

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks.”
arXiv preprint arXiv:1601.06759 (2016).

PixelCNN Row LSTM Diagonal BiLSTMmasked convolution

only depends on pixel
above and to the left

composing multiple
layers increases the

context size

van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.”
Advances in Neural Information Processing Systems. 2016.

There is a problem with this
form of masked convolution.

1 1 1 1 1

1 1 1 1 1

1 1 0 0 0

0 0 0

0 0 0

0

0

0

0

Blind spot

Stacking layers of masked
convolution creates a blindspot

 Improving PixelCNN

van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.”
Advances in Neural Information Processing Systems. 2016.

Blind spot

Stacking layers of masked
convolution creates a blindspot

Horizontal stack

Vertical stack

Solution: use two stacks of convolution,
a vertical stack and a horizontal stack

 Improving PixelCNN I

n⇥ n 1⇥ n

tanh �

⇥

+

+

1⇥ 1

1⇥ 1

tanh �

⇥

2p

pp

p

p

pp

2p

p
Split feature maps

p = #feature maps

van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.” NIPS 2016.

Use more expressive nonlinearity: hk+1 = tanh(Wk,f ⇤ hk)� �(Wk,g ⇤ hk)

 Improving PixelCNN II

Vertical stack (in) Horizontal stack (in)

Vertical stack (out) Horizontal stack (out)

This information flow (between
vertical and horizontal stacks)
preserves the correct pixel
dependencies

EXPERIMENTAL RESULTS
28

Topics: CIFAR-10
• Performance measured in bits/dim

score actually generalize better. Gated PixelCNN outperforms the PixelCNN by 0.11 bits/dim, which
has a very significant effect on the visual quality of the samples produced, and which is close to the
performance of PixelRNN.

Model NLL Test (Train)

Uniform Distribution: [30] 8.00
Multivariate Gaussian: [30] 4.70
NICE: [4] 4.48
Deep Diffusion: [24] 4.20
DRAW: [9] 4.13
Deep GMMs: [31, 29] 4.00
Conv DRAW: [8] 3.58 (3.57)
RIDE: [26, 30] 3.47
PixelCNN: [30] 3.14 (3.08)
PixelRNN: [30] 3.00 (2.93)

Gated PixelCNN: 3.03 (2.90)

Table 1: Test set performance of different models on CIFAR-10 in bits/dim (lower is better), training
performance in brackets.

In Table 2 we compare the performance of Gated PixelCNN with other models on the ImageNet
dataset. Here Gated PixelCNN outperforms PixelRNN; we believe this is because the models are
underfitting, larger models perform better and the simpler PixelCNN model scales better. We were
able to achieve similar performance to the PixelRNN (Row LSTM [30]) in less than half the training
time (60 hours using 32 GPUs). For the results in Table 2 we trained a larger model with 20 layers
(Figure 2), each having 384 hidden units and filter size of 5⇥ 5. We used 200K synchronous updates
over 32 GPUs in TensorFlow [1] using a total batch size of 128.

32x32 Model NLL Test (Train)

Conv Draw: [8] 4.40 (4.35)
PixelRNN: [30] 3.86 (3.83)

Gated PixelCNN: 3.83 (3.77)

64x64 Model NLL Test (Train)

Conv Draw: [8] 4.10 (4.04)
PixelRNN: [30] 3.63 (3.57)

Gated PixelCNN: 3.57 (3.48)

Table 2: Performance of different models on ImageNet in bits/dim (lower is better), training perfor-
mance in brackets.

3.2 Conditioning on ImageNet Classes

For our second experiment we explore class-conditional modelling of ImageNet images using Gated
PixelCNNs. Given a one-hot encoding hi for the i-th class we model p(x|hi). The amount of
information that the model receives is only log(1000) ⇡ 0.003 bits/pixel (for a 32x32 image). Still,
one could expect that conditioning the image generation on class label could significantly improve
the log-likelihood results, however we did not observe big differences. On the other hand, as noted
in [27], we observed great improvements in the visual quality of the generated samples.

In Figure 3 we show samples from a single class-conditional model for 8 different classes. We see that
the generated classes are very distinct from one another, and that the corresponding objects, animals
and backgrounds are clearly produced. Furthermore the images of a single class are very diverse: for
example the model was able to generate similar scenes from different angles and lightning conditions.
It is encouraging to see that given roughly 1000 images from every animal or object the model is able
to generalize and produce new renderings.

5

Conditional Image Generation with PixelCNN Decoders
van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, Kavukcuoglu, NIPS 2016

EXPERIMENTAL RESULTS
29

Topics: CIFAR-10
• Samples from a class-conditional PixelCNN

Conditional Image Generation with PixelCNN Decoders
van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, Kavukcuoglu, NIPS 2016

African elephant Coral Reef

Sandbar Sorrel horse

Lhasa Apso (dog) Lawn mower

Brown bear Robin (bird)

Figure 3: Class-Conditional samples from the Conditional PixelCNN.

Figure 4: Left: source image. Right: new portraits generated from high-level latent representation.

Figure 5: Linear interpolations in the embedding space decoded by the PixelCNN. Embeddings from
leftmost and rightmost images are used for endpoints of the interpolation.

7

EXPERIMENTAL RESULTS
30

Topics: CIFAR-10
• Samples from a class-conditional PixelCNN

Conditional Image Generation with PixelCNN Decoders
van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, Kavukcuoglu, NIPS 2016

African elephant Coral Reef

Sandbar Sorrel horse

Lhasa Apso (dog) Lawn mower

Brown bear Robin (bird)

Figure 3: Class-Conditional samples from the Conditional PixelCNN.

Figure 4: Left: source image. Right: new portraits generated from high-level latent representation.

Figure 5: Linear interpolations in the embedding space decoded by the PixelCNN. Embeddings from
leftmost and rightmost images are used for endpoints of the interpolation.

7

EXPERIMENTAL RESULTS
31

Topics: CIFAR-10
• Samples from a class-conditional PixelCNN

Conditional Image Generation with PixelCNN Decoders
van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, Kavukcuoglu, NIPS 2016

African elephant Coral Reef

Sandbar Sorrel horse

Lhasa Apso (dog) Lawn mower

Brown bear Robin (bird)

Figure 3: Class-Conditional samples from the Conditional PixelCNN.

Figure 4: Left: source image. Right: new portraits generated from high-level latent representation.

Figure 5: Linear interpolations in the embedding space decoded by the PixelCNN. Embeddings from
leftmost and rightmost images are used for endpoints of the interpolation.

7

EXPERIMENTAL RESULTS
32

Topics: CIFAR-10
• Samples from a class-conditional PixelCNN

Conditional Image Generation with PixelCNN Decoders
van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, Kavukcuoglu, NIPS 2016

African elephant Coral Reef

Sandbar Sorrel horse

Lhasa Apso (dog) Lawn mower

Brown bear Robin (bird)

Figure 3: Class-Conditional samples from the Conditional PixelCNN.

Figure 4: Left: source image. Right: new portraits generated from high-level latent representation.

Figure 5: Linear interpolations in the embedding space decoded by the PixelCNN. Embeddings from
leftmost and rightmost images are used for endpoints of the interpolation.

7

WaveNet

van den Oord, Aäron, et al. "Wavenet: A generative model for raw audio." CoRR abs/1609.03499 (2016).

Audio: much larger dimensionality than images (at least 16,000 samples per second)

Idea: adapt PixelCNN to allow very large temporal dependencies

WaveNet

van den Oord, Aäron, et al. "Wavenet: A generative model for raw audio." CoRR abs/1609.03499 (2016).

Addressing large-scale temporal dependencies

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Input

Hidden Layer

Hidden Layer

Hidden Layer

Output

Regular convolutions Dilated convolutions

Note: strided convolutions cannot be used because the output has to have the same
dimensionality as the input.

WaveNet

van den Oord, Aäron, et al. "Wavenet: A generative model for raw audio." CoRR abs/1609.03499 (2016).

Discrete conditional probabilities

at (16-bit int) ! xt 2 [�1, 1]

x̃t = sign(xt)
ln(1 + 255|xt|)

ln 256
x̃t 2 [�1, 1] ! ãt (8-bit int)

μ-law companding
transformation

quantize back

xt

x̃t

WaveNet

van den Oord, Aäron, et al. "Wavenet: A generative model for raw audio." CoRR abs/1609.03499 (2016).

Complete architecture

1⇥ 1 ReLUReLU
1⇥ 1

Dilated
Conv

tanh

⇥

+

�

1⇥ 1+ Softmax

Residual

Skip-connections

k Layers

Output

Causal
Conv

Input

WaveNet

van den Oord, Aäron, et al. "Wavenet: A generative model for raw audio." CoRR abs/1609.03499 (2016).

Conditional generation

z = tanh(Wk,f ⇤ x+ V T
k,fh)� �(Wk,g ⇤ x+ V T

k,gh)

z = tanh(Wk,f ⇤ x+ Vk,f ⇤ h)� �(Wk,g ⇤ x+ Vk,g ⇤ h)

Global conditioning (e.g., speaker ID)

Local conditioning (e.g., text)

AUTOREGRESSIVE VIDEO MODELS
38

Topics: Video Pixel Network
• Connect Pixel CNN to frame-wise convolutional networks and

time-wise convolutional LSTMs

R

G

B

FtF<t

x

F1F0 F2

F̂3F̂0 F̂3F̂1

F1F0 F2 F3

R

G

B

FtF<t

x

F1F0 F2

F̂3F̂0 F̂3F̂1

BaselineVideo Pixel Network

PixelCNN
Decoders

CNN
Decoders

Resolution Preserving
CNN Encoders

Figure 1: Dependency map (top) and neural network structure (bottom) for the VPN (left)
and the baseline model (right).

10 frames. In Sect. 5 we show that the VPN achieves 87.6 nats/frame, a score that is near
the lower bound on the loss (calculated to be 86.3 nats/frame); this constitutes a significant
improvement over the previous best result of 179.8 nats/frame (Patraucean et al., 2015).

The second benchmark is the Robotic Pushing dataset (Finn et al., 2016) where, given two
natural video frames showing a robotic arm pushing objects,

the task is to predict the following 18 frames. We show that

the VPN not only generalizes to new action sequences with objects seen during training,
but also to new action sequences involving novel objects not seen during training. Random
samples from the VPN preserve remarkable detail throughout the generated sequence. We
also define a baseline model that lacks the space and color dependencies. This lets us see
that the latter dependencies are crucial for avoiding systematic artifacts in generated videos.

2 Model

In this section we define the probabilistic model implemented by Video Pixel Networks. Let
a video x be a four-dimensional tensor of pixel values xt,i,j,c, where the first (temporal)
dimension t 2 {0, ..., T} corresponds to one of the frames in the video, the next two (spatial)
dimensions i, j 2 {0, ..., N} index the pixel at row i and column j in frame t, and the last
dimension c 2 {R, G, B} denotes one of the three RGB channels of the pixel. We let each
xt,i,j,c be a random variable that takes values from the RGB color intensities of the pixel.

By applying the chain rule to factorize the video likelihood p(x) as a product of conditional
probabilities, we can model it in a tractable manner and without introducing independence
assumptions:

p(x) =
TY

t=0

NY

i=0

NY

j=0

p(xt,i,j,B |x<,xt,i,j,R,xt,i,j,G) p(xt,i,j,G|x<,xt,i,j,R) p(xt,i,j,R|x<). (1)

Here x< = x(t,<i,<j,:) [x(<t,:,:,:) comprises the RGB values of all pixels to the left and above
the pixel at position (i, j) in the current frame t, as well as the RGB values of pixels from
all the previous frames.

2

R

G

B

FtF<t

x

F1F0 F2

F̂3F̂0 F̂3F̂1

F1F0 F2 F3

R

G

B

FtF<t

x

F1F0 F2

F̂3F̂0 F̂3F̂1

BaselineVideo Pixel Network

PixelCNN
Decoders

CNN
Decoders

Resolution Preserving
CNN Encoders

Figure 1: Dependency map (top) and neural network structure (bottom) for the VPN (left)
and the baseline model (right).

10 frames. In Sect. 5 we show that the VPN achieves 87.6 nats/frame, a score that is near
the lower bound on the loss (calculated to be 86.3 nats/frame); this constitutes a significant
improvement over the previous best result of 179.8 nats/frame (Patraucean et al., 2015).

The second benchmark is the Robotic Pushing dataset (Finn et al., 2016) where, given two
natural video frames showing a robotic arm pushing objects,

the task is to predict the following 18 frames. We show that

the VPN not only generalizes to new action sequences with objects seen during training,
but also to new action sequences involving novel objects not seen during training. Random
samples from the VPN preserve remarkable detail throughout the generated sequence. We
also define a baseline model that lacks the space and color dependencies. This lets us see
that the latter dependencies are crucial for avoiding systematic artifacts in generated videos.

2 Model

In this section we define the probabilistic model implemented by Video Pixel Networks. Let
a video x be a four-dimensional tensor of pixel values xt,i,j,c, where the first (temporal)
dimension t 2 {0, ..., T} corresponds to one of the frames in the video, the next two (spatial)
dimensions i, j 2 {0, ..., N} index the pixel at row i and column j in frame t, and the last
dimension c 2 {R, G, B} denotes one of the three RGB channels of the pixel. We let each
xt,i,j,c be a random variable that takes values from the RGB color intensities of the pixel.

By applying the chain rule to factorize the video likelihood p(x) as a product of conditional
probabilities, we can model it in a tractable manner and without introducing independence
assumptions:

p(x) =
TY

t=0

NY

i=0

NY

j=0

p(xt,i,j,B |x<,xt,i,j,R,xt,i,j,G) p(xt,i,j,G|x<,xt,i,j,R) p(xt,i,j,R|x<). (1)

Here x< = x(t,<i,<j,:) [x(<t,:,:,:) comprises the RGB values of all pixels to the left and above
the pixel at position (i, j) in the current frame t, as well as the RGB values of pixels from
all the previous frames.

2

R

G

B

FtF<t

x

F1F0 F2

F̂3F̂0 F̂3F̂1

F1F0 F2 F3

R

G

B

FtF<t

x

F1F0 F2

F̂3F̂0 F̂3F̂1

BaselineVideo Pixel Network

PixelCNN
Decoders

CNN
Decoders

Resolution Preserving
CNN Encoders

Figure 1: Dependency map (top) and neural network structure (bottom) for the VPN (left)
and the baseline model (right).

10 frames. In Sect. 5 we show that the VPN achieves 87.6 nats/frame, a score that is near
the lower bound on the loss (calculated to be 86.3 nats/frame); this constitutes a significant
improvement over the previous best result of 179.8 nats/frame (Patraucean et al., 2015).

The second benchmark is the Robotic Pushing dataset (Finn et al., 2016) where, given two
natural video frames showing a robotic arm pushing objects,

the task is to predict the following 18 frames. We show that

the VPN not only generalizes to new action sequences with objects seen during training,
but also to new action sequences involving novel objects not seen during training. Random
samples from the VPN preserve remarkable detail throughout the generated sequence. We
also define a baseline model that lacks the space and color dependencies. This lets us see
that the latter dependencies are crucial for avoiding systematic artifacts in generated videos.

2 Model

In this section we define the probabilistic model implemented by Video Pixel Networks. Let
a video x be a four-dimensional tensor of pixel values xt,i,j,c, where the first (temporal)
dimension t 2 {0, ..., T} corresponds to one of the frames in the video, the next two (spatial)
dimensions i, j 2 {0, ..., N} index the pixel at row i and column j in frame t, and the last
dimension c 2 {R, G, B} denotes one of the three RGB channels of the pixel. We let each
xt,i,j,c be a random variable that takes values from the RGB color intensities of the pixel.

By applying the chain rule to factorize the video likelihood p(x) as a product of conditional
probabilities, we can model it in a tractable manner and without introducing independence
assumptions:

p(x) =
TY

t=0

NY

i=0

NY

j=0

p(xt,i,j,B |x<,xt,i,j,R,xt,i,j,G) p(xt,i,j,G|x<,xt,i,j,R) p(xt,i,j,R|x<). (1)

Here x< = x(t,<i,<j,:) [x(<t,:,:,:) comprises the RGB values of all pixels to the left and above
the pixel at position (i, j) in the current frame t, as well as the RGB values of pixels from
all the previous frames.

2

Video Pixel Networks
Kalchbrenner, van den Oord, Simonyan,

Danihelka, Vinyals, Graves, Kavukcuoglu, NIPS 2016

AUTOREGRESSIVE VIDEO MODELS
39

Topics: Video Pixel Network
• Connect Pixel CNN to frame-wise convolutional networks and

time-wise convolutional LSTMs

• Videos of robot manipulating
‣ objects seen in the training set

‣ new objects not seen in training set

Video Pixel Networks
Kalchbrenner, van den Oord, Simonyan,

Danihelka, Vinyals, Graves, Kavukcuoglu, NIPS 2016

https://twitter.com/nalkalchbrenner/status/783116053031358465
https://twitter.com/nalkalchbrenner/status/783119202819375104

Parallel Multiscale Autoregressive Density Estimation
Scott Reed, Aaron vanden Oord, Nal Kalchbrenner, Sergio Go ḿez Colmenarejo, Ziyu Wang, Dan Belov, Nando de Freitas (2017)

Can we speed up the generation time of PixelCNN?
• Yes, via multiscale generation:

Parallel Multiscale Autoregressive Density Estimation
Scott Reed, Aaron vanden Oord, Nal Kalchbrenner, Sergio Go ḿez Colmenarejo, Ziyu Wang, Dan Belov, Nando de Freitas (2017)

Can we speed up the generation time of PixelCNN?
• Yes, via multiscale generation:

Parallel Multiscale Autoregressive Density Estimation

�

�

�

�

� �

� �

� �

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 2. Example pixel grouping and ordering for a 4 ⇥ 4 image. The upper-left corners form group 1, the upper-right group 2, and so
on. For clarity we only use arrows to indicate immediately-neighboring dependencies, but note that all pixels in preceding groups can
be used to predict all pixels in a given group. For example all pixels in group 2 can be used to predict pixels in group 4. In our image
experiments pixels in group 1 originate from a lower-resolution image. For video, they are generated given the previous frames.

Figure 3. A simple form of causal upscaling network, mapping from a K ⇥ K image to K ⇥ 2K. The same procedure can be applied in
the vertical direction to produce a 2K ⇥ 2K image. In reference to figure 2, the leftmost images could be considered “group 1” pixels;
i.e. the upper-left corners. The network shown here produces “group 2” pixels; i.e. the upper-right corners, completing the top-corners
half of the image. (A) In the simplest version, a deep convolutional network (in our case ResNet) directly produces the right image from
the left image, and merges column-wise. (B) A more sophisticated version extracts features from a convolutional net, splits the feature
map into spatially contiguous blocks, and feeds these in parallel through a shallow PixelCNN. The result is then merged as in (A).

3. Model

The main design principle that we follow in building the
model is a coarse-to-fine ordering of pixels. Successively
higher-resolution frames are generated conditioned on the
previous resolution (See for example Figure 1). Pixels are
grouped so as to exploit spatial locality at each resolution,
which we describe in detail below.

The training objective is to maximize log P(x; ✓). Since the
joint distribution factorizes over pixel groups and scales,
the training can be trivially parallelized.

3.1. Network architecture

Figure 2 shows how we divide an image into disjoint
groups of pixels, with autoregressive structure among the
groups. The key property to notice is that no two adjacent
pixels of the high-resolution image are in the same group.
Also, pixels can depend on other pixels below and to the
right, which would have been inaccessible in the standard
PixelCNN. Each group of pixels corresponds to a factor in
the joint distribution of equation 2.

Concretely, to create groups we tile the image with 2 ⇥ 2
blocks. The corners of these 2⇥2 blocks form the four pixel
groups at a given scale; i.e. upper-left, upper-right, lower-
left, lower-right. Note that some pairs of pixels both within
each block and also across blocks can still be dependent.
These additional dependencies are important for capturing
local textures and avoiding border artifacts.

Figure 3 shows an instantiation of one of these factors as a
neural network. Similar to the case of PixelCNN, at train-
ing time losses and gradients for all of the pixels within
a group can be computed in parallel. At test time, infer-
ence proceeds sequentially over pixel groups, in parallel
within each group. Also as in PixelCNN, we model the
color channel dependencies - i.e. green sees red, blue sees
red and green - using channel masking.

In the case of type-A upscaling networks (See Figure 3A),
sampling each pixel group thus requires 3 network evalua-
tions 1. In the case of type-B upscaling, the spatial feature

1However, one could also use a discretized mixture of logistics
as output instead of a softmax as in Salimans et al. (2017), in
which case only one network evaluation is needed.

Parallel Multiscale Autoregressive Density Estimation
Scott Reed, Aaron vanden Oord, Nal Kalchbrenner, Sergio Go ḿez Colmenarejo, Ziyu Wang, Dan Belov, Nando de Freitas (2017)

Can we speed up the generation time
of PixelCNN?

• Yes, via multiscale generation.
• Also seems to help to provide

better global structure

Parallel Multiscale Autoregressive Density Estimation

Scott Reed
1

Aäron van den Oord
1

Nal Kalchbrenner
1

Sergio Gómez Colmenarejo
1

Ziyu Wang
1

Dan Belov
1

Nando de Freitas
1

Abstract

PixelCNN achieves state-of-the-art results in
density estimation for natural images. Although
training is fast, inference is costly, requiring one
network evaluation per pixel; O(N) for N pix-
els. This can be sped up by caching activations,
but still involves generating each pixel sequen-
tially. In this work, we propose a parallelized
PixelCNN that allows more e�cient inference
by modeling certain pixel groups as condition-
ally independent. Our new PixelCNN model
achieves competitive density estimation and or-
ders of magnitude speedup - O(log N) sampling
instead of O(N) - enabling the practical genera-
tion of 512⇥ 512 images. We evaluate the model
on class-conditional image generation, text-to-
image synthesis, and action-conditional video
generation, showing that our model achieves the
best results among non-pixel-autoregressive den-
sity models that allow e�cient sampling.

1. Introduction

Many autoregressive image models factorize the joint dis-
tribution of images into per-pixel factors:

p(x1:T) =
TY

t=1

p(xt |x1:t�1) (1)

For example PixelCNN (van den Oord et al., 2016b) uses
a deep convolutional network with carefully designed fil-
ter masking to preserve causal structure, so that all factors
in equation 1 can be learned in parallel for a given image.
However, a remaining di�culty is that due to the learned
causal structure, inference proceeds sequentially pixel-by-
pixel in raster order.

In the naive case, this requires a full network evaluation
per pixel. Caching hidden unit activations can be used to
reduce the amount of computation per pixel, as in the 1D

1DeepMind. Correspondence to: Scott Reed <reed-
scot@google.com>.

� � �� ��

�� ���

���

�� ��� ���

³$�\HOORZ�ELUG�ZLWK�D�EODFN�KHDG��RUDQJH�H\HV�DQG�DQ�RUDQJH�ELOO�´

Figure 1. Samples from our model at resolutions from 4 ⇥ 4 to
256⇥ 256, conditioned on text and bird part locations in the CUB
data set. See Fig. 4 and the supplement for more examples.

case for WaveNet (Oord et al., 2016; Ramachandran et al.,
2017). However, even with this optimization, generation is
still in serial order by pixel.

Ideally we would generate multiple pixels in parallel,
which could greatly accelerate sampling. In the autore-
gressive framework this only works if the pixels are mod-
eled as independent. Thus we need a way to judiciously
break weak dependencies among pixels; for example im-
mediately neighboring pixels should not be modeled as in-
dependent since they tend to be highly correlated.

Multiscale image generation provides one such way to
break weak dependencies. In particular, we can model cer-
tain groups of pixels as conditionally independent given a
lower resolution image and various types of context infor-
mation, such as preceding frames in a video. The basic idea
is obvious, but nontrivial design problems stand between
the idea and a workable implementation.

First, what is the right way to transmit global information
from a low-resolution image to each generated pixel of the
high-resolution image? Second, which pixels can we gen-
erate in parallel? And given that choice, how can we avoid
border artifacts when merging sets of pixels that were gen-
erated in parallel, blind to one another?

ar
X

iv
:1

70
3.

03
66

4v
1

 [c
s.C

V
]

10
 M

ar
 2

01
7

Parallel WaveNet:Fast High-Fidelity Speech Synthesis
(van den Oord et al., 2017)

Can we speed up generation
time of WaveNet?
• Yes, via distillation training with

a teacher WaveNet.
(matching the KL divergence)

• Used additional losses to
improve performance:

- power loss: match the power
spectrum to real data (speech)

- perceptual loss: distance in
pre-trained classifier activation
space.

- contrastive loss: bring the
output closer to similar data and
farther from dissimilar data.

WaveNet Teacher

WaveNet Student P (xi|z<i)

P (xi|x<i)

zi

Generated Samples

Student Output

Teacher Output

Input noise

Linguistic features

Linguistic features

xi = g(zi|z<i)

Figure 2: Overview of Probability Density Distillation. A pre-trained WaveNet teacher is used to
score the samples x output by the student. The student is trained to minimise the KL-divergence
between its distribution and that of the teacher by maximising the log-likelihood of its samples under
the teacher and maximising its own entropy at the same time.

First, observe that the entropy term H(PS) in Equation 6 can be rewritten as follows:

H(PS) = E
z⇠L(0,1)

"
TX

t=1

� ln pS(xt|z<t)

#
(7)

= E
z⇠L(0,1)

"
TX

t=1

ln s(z<t,✓)

#
+ 2T, (8)

where x = g(z) and zt are independent samples drawn from the logistic distribution. The second
equality in Equation 8 follows because the entropy of a logistic distribution L(µ, s) is ln s + 2. We
can therefore compute this term without having to explicitly generate x.

The cross-entropy term H(PS , PT) however explicitly depends on x = g(z), and therefore requires
sampling from the student to estimate.

H(PS , PT) =

Z

x
pS(x) ln pT (x) (9)

=
TX

t=1

Z

x
pS(x) ln pT (xt|x<t) (10)

=
TX

t=1

Z

x
pS(x<t)pS(xt|x<t)pS(x>t|xt) ln pT (xt|x<t) (11)

=
TX

t=1

E
pS(x<t)

 Z

xt

pS(xt|x<t) ln pT (xt|x<t)

Z

x>t

pS(x>t|xt)

�
(12)

=
TX

t=1

E
pS(x<t)

H

⇣
pS(xt|x<t), pT (xt|x<t)

⌘
. (13)

For every sample x we draw from the student pS we can compute all pT (xt|x<t) in parallel with the
teacher and then evaluate H(pS(xt|x<t), pT (xt|x<t)) very efficiently by drawing multiple different
samples xt from pS(xt|x<t) for each timestep. This unbiased estimator has a much lower variance
than naively evaluating the sample under the teacher with Equation 9.

5

• Autoregressive generative models
‣ choose an ordering of the dimensions in x

‣ define the conditionals in the product rule expression of p(x)

‣ examples: masked autoencoder distribution estimator (MADE), pixelCNN
 neural autoregressive distribution estimator (NADE), spatial LSTM, pixelRNN

• Properties
‣ pros: p(x) is tractable, so easy to train, easy to sample (though slower)
‣ cons: doesn’t have a natural latent representation

FAMILY OF GENERATIVE MODELS
43

...

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

1

p(x) =
DY

k=1

p(xk|x<k)

